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Abstract 

An experiment was conducted investigating the use of an acoustic pulse 

waveguide to collect response measurements from three piezoelectric acoustic emission 

(AE) transducers while the transducers were exposed to an active nuclear reactor neutron 

flux ranging from 1 x 1011 to 2.4 x 1012 neutrons per cm2 s.  Material, mechanical, and 

radiation studies were performed to determine a practical design for the construction of 

the experiment.  Discreet frequency pulses generated by an Arbitrary Waveform 

Generator were transmitted by an aluminum waveguide to the core of the Ohio State 

University Research Reactor (OSURR).  Three AE transducers coupled to the waveguide 

were exposed to the reactor neutron fluence and their response to each frequency pulse 

was measured over time.  The recorded data was used to study the correlation between 

the neutron dose and resulting device damage.  Response measurements were also taken 

in situ during post-irradiation periods to determine if response changes due to radiation 

damage would recover with time. 

Data sampling of transducer response was reproducible with a standard deviation 

that ranged between 3% and 8% of the mean value for all frequencies.  Final transducer 

response levels varied between devices and frequencies, but were consistently degraded.  

Decreases in response between transducers ranged from 36% to 78% using the average 

percent decrease over ten test frequencies.  Individual frequency response degradation 

ranged from 16% to 92%. 
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AN EXPERIMENTAL DESIGN FOR MEASURING IN SITU RADIATION 

DAMAGE TO A PIEZOELECTRIC TRANSDUCER 

 
 
 

I. Introduction 

Los Alamos National Laboratory (LANL) has been performing experiments related to the 

nuclear stockpile stewardship program using the Annular Core Research Reactor (ACRR) 

located at Sandia National Laboratory (SNL) in New Mexico.  The experiment involves 

exposing the contents of a sealed metal containment vessel to a radiation pulse being 

generated by the ACRR.  The radiation pulse produces a pressure induced shockwave 

that propagates through the metal containment vessel.  Researchers at LANL, in 

conjunction with Arizona State University (ASU), are interested in measuring the 

propagation of the shockwave and are currently investigating the use of piezoelectric 

acoustic emission transducers to collect data (Holbert et. al., 2003, 2-5). 

Background 

The ACRR is a water moderated, convective cooling pool-type reactor.  The core 

consists of uranium oxide (UO2) in combination with beryllium dioxide (BeO2) and is 

enriched to 35 wt% 235U.  It has a steady-state power capability of 2-4 MW(th) and a 

maximum pulse capability of 35,000 MW(th) peak power in a 7 ms time interval. 

The ACRR pulse mode is initiated by nitrogen pressure ejection of the transient 

rods resulting in an immediate power surge.  The power surge causes the core (figure 1) 
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temperature to increase resulting in fuel expansion, also known as negative temperature 

feedback.  Decreased fuel density diminishes the neutron chain reaction rate in the core 

resulting in a sharp decrease in power.  A rapid safety shutdown, also called “scram”, is 

executed immediately following the energy pulse by inserting safety rods into the core.  

Insertion of the safety rods increases non-fission neutron absorption reactions and, in 

combination with the negative temperature feedback, results in the core becoming sub-

critical. 

 

POISON

FUEL

TRANSIENT RODSSAFETY RODS

CONTROL RODS

POISON

FUEL

TRANSIENT RODSSAFETY RODS

CONTROL RODS  

Figure 1.  ACRR core control diagram 

 

Conducting experiments in a high-energy pulsed reactor environment creates 

additional challenges to data collection when using sensors constructed from 

semiconductor materials.  Semiconductors are susceptible to damage from exposure to 
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high levels of both ionizing and non-ionizing radiation.  The research being conducted at 

LANL and ASU has encountered considerable difficulty in acquiring a piezoelectric or 

piezoresistive transducer that is not damaged by the pulsed radiation environment in the 

ACRR.  They have observed that some transducers fail initialization tests after being in a 

storage vault for several months and exposed to a gamma flux of 105 cm-2 s-1.  Some 

transducer models fail after being exposed to a single reactor pulse while others survive 

multiple reactor pulses (McCready et. at., 2003, 1-5). 

Piezoresistive transducers rely on conductivity changes in a reference material 

that is subjected to stress.  If an electric potential is applied across a piezoresistive 

material in an electrical circuit and a pressure differential is applied, the measured current 

will vary with the applied pressure.  This type of transducer requires an applied potential 

and electrical current to be useful for pressure measurement.  In an ionizing radiation 

environment, its performance will be degraded by induced currents and conductivity 

changes in insulating materials. 

Piezoelectric transducers are small, lightweight, simply constructed, and do not 

require an applied potential or electrical current to perform measurements.  Piezoelectric 

materials generate an electric potential in response to an applied force and the potential 

generated is proportional to the force.  Transducers constructed from piezoelectric 

ceramic materials may offer an ionizing-radiation hardened alternative to silicon-based 

transducers because they do not rely on electrical current to measure applied force.  

Research conducted on lithium niobate exposure to gamma irradiation indicated no 
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significant change in piezoelectric properties up to a total dose of 1010 Roentgen, or 

approximately 104 Mrad (Halverson et. al., 1970, 335; Smith, 1971, 713).   

Lead metaniobate (PbNb2O6) is a ceramic material that has some particularly 

attractive properties for use in a piezoelectric transducer.  It has a high melting point 

suggesting a potential for high temperature operation and a broad range of frequency 

response.  It also has a very high electromechanical coupling (0.6), which is the ratio of 

energy absorbed to that converted to a piezoelectrical response (Broomfield, 1985, 8). 

Recently, ASU tested certain ceramic acoustic emission (AE) transducers 

composed of lead metaniobate.  Acoustic emission occurs when a material subjected to 

stress releases energy in the form of an acoustic wave.  Different materials have 

characteristic acoustic emission frequencies.  Acoustic emission sensors are piezoelectric 

transducers which are capable of detecting a very broad band of frequencies.  Frequency 

information measured by the transducer can then be used to determine the material 

composition of the source.  It is also possible to identify the location of a frequency 

source by using multiple AE transducers at various locations on an object.  By capturing 

time of frequency arrival, triangulation techniques can be used to determine location.   

The sensors were exposed to 4.5 Mrad of ionizing radiation in a 60Co gamma cell 

and continued to measure acoustic signals without experiencing degraded performance 

(Holbert et. al., 2003, 2-5).  However, performance was not measured in situ and the 

ACRR generates both gamma and neutron radiation.  In order to substantiate the radiation 

tolerance of lead metaniobate AE transducers, it is essential to subject the sensors to 

neutron irradiation and determine if there is any performance degradation in situ. 
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Following an extensive literature search, it became apparent that very little work 

exists dedicated to examining the effects of non-ionizing radiation on piezoelectric 

materials.  There is even less available information concerning neutron irradiation of lead 

metaniobate and resultant displacement damage. 

This research is an initial investigation into the behavior and performance of lead 

metaniobate as an acoustic emission sensor material in a non-ionizing radiation 

environment.  It will examine the relationship between neutron radiation dose and its 

impact on the performance of lead metaniobate piezoelectric acoustic emission 

transducers. 

Problem Statement 

Previous research of radiation effects on AE transducers at LANL and ASU has 

been isolated to gamma radiation environments and has not included neutrons.  The 

transducers will be used in the ACRR to take AE measurements during a radiation pulse, 

which will result in their exposure to a neutron fluence of 1015 cm-2.  An understanding of 

the effects of neutron damage on the operation of these transducers is essential to the 

success of the LANL research. 

The goals of this research are: (1) to construct an experimental apparatus that will 

generate reproducible in situ response measurements for a range of acoustic pulse 

transmissions using lead metaniobate AE transducers in close proximity to the core of a 

nuclear reactor, (2) characterize the relationship between neutron radiation exposure and 

frequency sensitivity of the transducers, (3) determine if there is a radiation dose limit 

where the transducers fail to give a reproducible response with a standard deviation that 
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is less than 10% of the mean value measured, and (4) investigate response recovery of the 

transducers to neutron radiation damage at ambient room temperature. 

Research Scope 

This research will investigate an experimental design for in situ measurements of 

the effects of neutron radiation on piezoelectric devices.  The emphasis of the research is 

to gather accurate and consistently reproducible data on the response of a lead 

metaniobate transducer as a function of long term exposure to neutron radiation.  

Piezoelectric AE transducers are to be used by Los Alamos National Laboratory (LANL) 

to measure pressure changes in a high flux neutron environment, so it is necessary to 

understand the effects that neutron radiation will have on the operation of the transducers. 

Prior research shows that using piezoresistive silicon transducers to measure a 

pressure induced shockwave traveling through the walls of a metal container inside the 

ACRR during a radiation pulse would have a high probability of failure. Displacement 

damage has been shown to cause resistivity changes in silicon based sensors of 3.7% 

during exposure to a neutron fluence one order of magnitude less than a pulse in the 

ACRR (Willmon, 2003, 52).  Multiple piezoresistive transducers used in the ACRR 

facility have failed from low dose exposure to ionizing radiation (McCready, 2002, 5).  

 Alternatively, piezoelectric transducers are inherently more resistant to ionizing 

radiation.  If it can be shown that neutron radiation does not cause transducer failure, AE 

transducers could be used in the ACRR during pulse experiments for shockwave 

measurement and for identifying the composition and location of the source of a 

measured frequency.  
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Methodology 

The theory of this research focuses on three fields of physics which will influence 

the experimental design:  A material study, a mechanics study and a radiation study.  The 

conclusions from the studies combined with a thorough literature review will aid in 

selection of materials, construction of the experiment, and development of the procedures 

that will be used to ensure the research goals are successful. 

The material study will focus on understanding the material used to construct the 

transducers.  More specifically, the physical characteristics of lead metaniobate 

(PbNb2O6) will be emphasized because it is the piezoelectric material used in the acoustic 

emission transducers to be tested. 

The mechanical study will investigate how transducers operate, the propagation of 

sound in solid media, how coupling affects transducer performance, and the effects of 

thermal heating on the transducers and materials used in this experiment. 

Finally, the radiation study will focus on neutron radiation dose calculations, 

activation of materials used in constructing the experiment, noise generation, and 

radiation damage mechanisms. 

Assumptions/Limitations 

Permanent damage due to ionizing radiation will be considered negligible based 

on previous experimental work conducted by ASU and LANL.  Data gathered by Holbert 

et. al. indicates that this assumption is legitimate for gamma doses up to 4.5 Mrad using a 

60Co gamma source at a dose rate of 2.5 krad per minute (Holbert, 2003, 3).  Although 

this may not be a correct assumption, limited resources and time preclude an 
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investigation into the contribution of gamma radiation to the overall effect on the 

experiment. 
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II. Theory 

Chapter Overview 

This chapter investigates the influence that materials, mechanics, and radiation 

will have an on the experiment.  The information will be used as a guide in the selection 

of materials to construct the experiment and in the design of the experiment.  The 

material study is concerned primarily with the theory of piezoelectric materials.  The 

mechanical study will focus on the operating mechanics of transducers, thermal effects, 

coupling issues, and the concept of using a waveguide as a means of getting in situ 

response data from the transducers as they are being irradiated inside a nuclear reactor.  

The radiation study will review transducer radiation dose calculations, activation of 

materials, signal/noise considerations, and radiation damage mechanisms. 

Material Study 

Piezo is derived from a Greek word meaning “to press”, so piezoelectricity is 

electricity originating from pressure.  Piezoelectricity appears only in insulating solids.  

There are several materials able to produce the effect but crystalline materials are the 

most common (Mason, 1950, 1).  There are a number of piezoelectric materials which 

occur naturally.  Some of the more common types include: quartz (SiO2), tourmaline, and 

Rochelle salt.  Although natural piezoelectric materials are still occasionally used, their 

performance is generally not as good as man-made ceramic piezoelectrics.  These 

materials can be made with a very high degree of purity and can be tailored to meet the 

needs of a specific application. 
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The piezoelectric effect is caused by the application of stress on a crystal with no 

center of symmetry.  The stress will induce an unsymmetrical separation of charges along 

the crystal lattice which causes the formation of a dipole moment (figure 2).  When a 

periodic force is applied to a piezoelectric material, it will produce a voltage that is 

proportional to the force applied with the same frequency. 
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Figure 2.  Induced dipole in piezoelectric material 

 

Piezoelectric materials are often almost as rigid as a proportional piece of steel.  

Their inherent rigidity gives them a high natural frequency and a rapid rise time making 

them suitable for measuring quick or sharp forces such as high velocity impacts or high 

frequency vibrations.  They are often used to measure rapidly changing pressures such as 

those resulting from blasts, explosions, and pulsations.  To ensure measurement accuracy, 

the natural frequency of the sensor material must be considerably higher than the 

frequency to be measured or else measurement errors will result (Force Sensors, 2003). 



 

11 

Piezoelectric materials are considered to be ferroelectric in nature and also have 

the property of being pyroelectric.  Ferroelectric materials have a permanent spontaneous 

electric polarization that can be reversed in an electric field.  Although all piezoelectric 

materials are also ferroelectrics, the opposite does not apply.  A ferroelectric substance 

may also have a center of symmetry which will result in no net dipole being formed in 

the crystal lattice.   

A pyroelectric material is able to produce a state of electric polarity by a change 

of temperature.  Pyroelectric crystals have a built-in permanent electric polarization 

which is compensated for by free charge carriers which have migrated to the crystal 

surface at constant temperature.  However, when the crystal is heated the polarization 

changes resulting in a potential difference between the opposing surfaces of the crystal 

and results in the pyroelectric effect (Parker, 1983, 886). 

Piezoelectric ceramics are manufactured by a process known as poling (figure 3).  

Above a critical temperature known as the Curie point, the ceramic crystal has a cubic 

symmetry containing no dipole moment.  Below the Curie point the crystal structure 

changes to a tetragonal or rhombohedral symmetry resulting in a dipole moment.  By 

subjecting the ceramic to an electric field as it passes through the Curie point, it is 

possible to polarize the crystal lattice and maintain the polarization after the ceramic is 

removed from the field. 
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a). Random orientation of 
polar dipoles prior to 
polarization 

b). Polarization in DC 
electric field 

c). Remnant polarization after 
electric field is removed 

 

Figure 3.  Polarizing (poling) a piezoelectric ceramic (Piezoelectricity, 2004) 

 

Lead metaniobate is a good piezoelectric material for performing acoustic 

emission sensing.  Besides being inherently rigid, it also has a low mechanical quality 

factor (Qm), a high curie temperature, and a very good electromechanical coupling 

coefficient (k).  A low Qm  indicates its usefulness as a wide bandwidth sensor and also 

indicates it has very good frequency resolution.  Curie temperature indicates where the 

material’s ferroelectric nature will begin to break down.  The curie temperature for lead 

metaniobate is about 450o C, which means it can be used at very high temperatures 

without experiencing material failure (Lead Metaniobate, 6 Nov 2003; Piezoelectric 

Ceramic, 4 Nov 2003). 

Piezoelectric physical properties are described by constants which contain 

information relating the direction of applied mechanical or electrical force and the 

directions perpendicular to that force.  Each constant has two subscripts which indicate 

the direction of the two related properties (figure 4).   
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The piezoelectric charge constant, d, represents the degree of polarization 

generated per unit of mechanical stress applied.  The first subscript of d represents the 

direction of polarization generated while the second subscript indicates the axis of the 

applied stress.  For instance, d33 indicates an induced polarization in direction 3 per unit 

stress applied in direction 3.  The strain induced in the piezoelectric material by an 

applied electric field is the product of the electric field and d. 

 

 

Figure 4.  Direction of forces affecting a piezoelectric element (Piezoelectricity, 2004) 

 

The piezoelectric voltage constant, g, is the electric field generated by the 

piezoelectric material per unit of mechanical stress applied.  The first subscript of g 

represents the direction of the electric field generated while the second subscript indicates 

the axis of the applied stress.  The strength of the induced electric field in the 

piezoelectric material is the product of the applied stress and the value of g. 

The electromechanical coupling factor, k, indicates how effective the piezoelectric 

material converts mechanical energy to electrical energy or vice versa.  The first subscript 

indicates along which axis an electrode is applied.  The second subscript indicates the 
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axis in which mechanical energy is developed.  Table 1 lists the values of the 

piezoelectric constants for the lead metaniobate ceramic used in the construction of the 

transducers used in this experiment (Piezoelectric Ceramic, 2003). 

 

Table 1.  Lead Metaniobate Physical/Electrical Properties 
k31 Transverse Coupling Coefficient < .1 
k15 Shear Coupling Coefficient .275 
d33 Piezoelectric Strain Constant (X10-12 Coul/Newton) 85 
d31 Piezoelectric Strain Constant (X10-12 Coul/Newton) -15 
d15 Piezoelectric Strain Constant (X10-12 Coul/Newton) 105 
g33 Piezoelectric Voltage Constant (X10-3 Voltmeter/Newton) 32 
g31 Piezoelectric Voltage Constant (X10-3 Voltmeter/Newton) -7 
g15 Piezoelectric Voltage Constant (X10-3 Voltmeter/Newton) 31 
QM Mechanical Q (Thickness) < 15 

 

 

Another quality of lead metaniobate that is attractive is its lead content.  Lead has 

a high atomic number (82) which makes it more resistant to displacement.  The energy 

that a neutron is able to transfer to a nucleus during an elastic collision is governed by the 

relationship (Turner, 1995, 213): 

 
( )2max
4

mM
mME

Q n

+
=  (1) 

 

where m is the nucleus mass, M is the neutron mass, and En is the kinetic energy of 

neutron.  It is apparent from equation (1) that as the neutron collides with an increasingly 

larger nucleus, it is able to transfer a smaller fraction of its available energy.  Less energy 

transfer should reduce the degree of displacement damage to the crystal lattice of the 

piezoelectric material and enhance the survivability of the transducer. 
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Mechanics Study 

Transducers. 

When a force is applied to a piezoelectric crystal, a potential difference develops 

across the crystal that is proportional to the applied force.  Piezoelectric sensors differ 

from static-force sensors, such as a strain gage, because the electric signal generated by 

the piezoelectric crystal is transient.  This makes piezoelectric sensors unsuitable for 

measuring static forces but very useful for dynamic forces such as shockwaves or 

vibrations. 

Some desirable aspects of piezoelectric sensors include their rugged construction, 

small size, self-generated signal, and high response speed.  They are capable of detecting 

pressure events on the order of a millionth of a second.  The radiation pulse width of the 

ACRR lasts seven milliseconds.  Any shockwave resulting from the pulse would easily 

fall within the transducers response range.  Unfortunately, piezoelectric sensors are also 

sensitive to temperature changes and require special cables and amplification.  Table 2 

compares piezoelectric transducer specifications with some other types of sensors. 
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Table 2.  Typical Sensor Specifications (Holbert, short course, 2004) 
 
 
 

Accelerometer 
Range 

Pressure Range Bandwidth Size 

Variable Capacitance 2 g – 100 g 3 psi – 200 psi    

Force Rebalance 0.5 g – 125 g  Dependent on low 
pass filter 

 

Piezoelectric 0 g – 50,000 g 0 psi – 150,000 psi 20 Hz – 8 MHz 0.4 – 32 gm 

Piezoresistive 2,000 g – 
200,000 g 

0 psi – 30,000 psi 150 kHz – 1300 kHz 0.1 – 50 gm 

 
 

Piezoelectric transducers translate acoustic wave energy propagating in a material 

to an electrical signal.  Generally, the electric potential will be proportional to the wave 

intensity which allows calibration of the transducer for use in measuring force.  

Alternatively, the transducer can also be used to convert electric potential into 

mechanical vibration.  By applying an alternating potential across the material, the 

molecular dipoles align themselves, causing the material to expand or constrict.  This is 

known as electrostriction. 

In a typical transducer, the transduction element is usually composed of a stack of 

piezoelectric wafers positioned such that when a force is applied the resulting dipoles in 

each wafer will be end to end and the total voltage produced will be the sum of each 

individual wafer.  The thickness of the element determines the range of frequency 

sensitivity of the transducer.  A wafer will vibrate from a wavelength that is twice its 

thickness.  Therefore, the higher the desired frequency of detection or transmission, the 

thinner the piezoelectric wafers (Khazan, Piezoelectric Force Transducer, 5 Nov 03; 

Piezoelectric Transducers, 5 Nov 03). 
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A type of piezoelectric transducer of particular interest in this research is the 

acoustic emission (AE) transducer.  Acoustic emission testing is used to detect and locate 

crack or leaks in pressurized systems.  Generally, the systems are composed of metal but 

the technique can also be used with glass and carbon fiber. 

 

 

 

Figure 5.  Piezoelectric transducer (Piezoelectric Transducers, 2003) 

 

When stress is applied to a metal structure, it will deform to some extent.  As 

stress increases, the metal will reach a point where permanent microscopic deformation 

starts to occur.  At this point the metal will release stored energy in the form of elastic 

acoustic waves.  This process is called ‘Acoustic Emission’ (AE) and can be detected by 

broad band piezoelectric transducers mounted on the surface of the material.  Every metal 

has a characteristic AE frequency which can be used as a means for identification.  By 
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using multiple sensors at various locations, it is also possible to determine the location of 

an AE source by using frequency time of arrival and mathematical triangulation 

techniques.  Normal frequencies for AE range from 30 kHz to 30 MHz (Acoustic 

Emission, 2004). 

Acoustic emission transducers are designed to be able to detect a wide bandwidth 

of frequencies with good resolution, which is why lead metaniobate is a good choice as a 

piezoelectric ceramic for AE detection.  It has a low Qm indicating its usefulness as a 

wide bandwidth sensor and also indicating it has very good frequency resolution. 

Los Alamos has been using the B1025 AE piezoelectric transducer made by 

Digital Wave Corporation for the research they have been conducting.  They have already 

conducted several pulse experiments in the ACRR using these transducers to measure the 

shock induced into a sealed canister, locate acoustic emission sources, and identify the 

composition of the source.  The interpretation of the results is contingent on the effect of 

the radiation pulse on the transducer itself.  The B1025 AE transducer will therefore be 

the sensor used to conduct this experiment in determining the damage effects of neutron 

radiation. 

 

Table 3.  B1025 Transducer Specifications 
Frequency Bandwidth 50 kHz – 2 MHz 

Temperature Range -50oC – 100oC 

Dimensions 0.365” OD x 0.5” H 

Piezoelectric Crystal 0.25” diameter 

 



 

19 

Acoustics. 

Acoustic waves traveling in a hollow tube can be described as guided waves and 

the hollow tube can also be considered a waveguide.  It is also possible to use a solid 

metal rod to propagate acoustic longitudinal waves.  This is the type of waveguide that is 

of interest for conducting this experiment.  By attaching an acoustic pulser at one end of 

the rod and coupling the transducers to the other end, the response to the acoustic pulse 

can be measured after propagation through the waveguide.  Using this technique, it is 

possible to transmit a controlled signal of known frequency to the transducers and 

measure their response while they are being actively irradiated.  Neutron damage effects 

can be observed and measured in situ.  

The type of material used as a waveguide can have an impact on the frequencies 

that are transmitted or the quality of wave propagation.  To determine whether a 

particular frequency can be transmitted, it is necessary to consider the longitudinal wave 

equation: 
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where ξ represents longitudinal displacement, c is the wave propagation velocity in the 

media, Y represents Young’s modulus, and ρ is the media density.  Given the initial 

conditions that ξ = 0 and x = l, the solution to this equation is: 
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where f is the frequency, c is the wave propagation velocity, l represents the length of the 

waveguide, and n indicates the mode of vibration with n = 1 being the fundamental mode 

(Kinsler, Fundamentals of Acoustics, 59). 

Using the solution to the wave equation, several materials were evaluated to 

determine what frequency range each would accommodate.  Using a length of 72 inches, 

which represents the distance of the Ohio State University Reactor neutron beam port, 

and the physical constants for each material, the fundamental modes were calculated and 

are displayed in table 4 for comparison.  The materials all performed equally with the 

fundamental mode being about 1.4 kHz.  Since the fundamental frequency is well below 

the operational range of the B1025 AE transducer, which is rated from 50 kHz to 2 MHz, 

all of these materials are still acceptable for use in constructing a waveguide.   

 

Table 4.  Fundamental frequency for various metals 

 Density (ρ) 
(g/cc) 

Young’s Modulus (Y) 
(millions of psi) Fundamental Frequency 

Aluminum 2.7 10 1.38 kHz 
Carbon Steel 7.86 30 1.4 kHz 

Stainless Steel 8.0 28 1.34 kHz 
Titanium 4.5 16 1.35 kHz 
 

 

The second consideration for material selection is the quality of wave 

propagation.  To minimize loss of signal, the type of material selected should have a low 

degree of wave attenuation.  The intensity of sound transmitted through a medium can be 

determined by the relationship: 
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 reoII α−=  (4) 

 
where Io is the initial intensity, α is the intensity absorption coefficient, and r is the 

distance from the sound impulse source. 

In gases and liquids it is possible to determine the intensity absorption coefficient 

and use it in a great number of practical applications.  The theory of sound attenuation in 

solids however is complicated by many mechanisms to include: heat conductivity, 

scattering from grain boundaries, magnetic domain losses, interstitial diffusion of atoms, 

and dislocation relaxation processes in metals (Parker, Acoustics Source Book, 38). 

To determine the most suitable material for use as a wave guide, a more 

pragmatic approach was used.  Rods of various materials acceptable from a radiation 

standpoint (see the discussion on activation in the radiation study) will be tested on the 

bench and the results will be compared to determine which material transmits the 

maximum wave amplitude for a constant initial pulse.  By selecting the material with 

minimum wave attenuation, signal to noise ratio will be enhanced.   

An example of an attenuation bench test is illustrated in figure 6.  In this case, a 

steel bar measuring two feet in length is connected with a signal transmitter at one end 

and a receiving transducer at the other.  A one volt sinusoidal frequency sweep is 

transmitted through the bar and the received pulse (top) is compared to the transmitted 

pulse (bottom). 
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Figure 6.  Acoustic source signal (bottom) and transducer response (top)  

Thermal Effects. 

Materials that are exposed to a radiation field will absorb energy from interactions 

with the radiation at the atomic and nuclear level.  Some fraction of this deposited energy 

will be transformed into heat.  It is therefore reasonable to assume there will be thermal 

heating in the materials during the experiment resulting in expansion and contraction 

between the transducers and the waveguide.   

 

Thermal Effects
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Figure 7.  Thermal effect on transducer response 
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To determine the effects of thermal expansion, it is necessary to characterize the 

system at various temperatures to observe how expansion and contraction affect the 

apparatus.  Figure 7 illustrates a characterization of the transducer response to a series of 

acoustic pulses transmitted through the waveguide at room temperature and at 100o C. 

Coupling. 

A couplant is a material that facilitates the transmission of acoustic energy 

between a transducer and an object.  Couplant is used because there is an acoustic 

impedance mismatch between air and solids which results in a large percentage of 

acoustic energy being reflected instead of transmitted into a test material.  Couplant 

displaces the air and makes it possible to get more sound energy into the test material so 

that a greater acoustic signal can be generated or received.  A typical couplant in AE 

transducer work is silicon vacuum grease, but even a small amount of petroleum jelly 

will work.  

Although using a couplant is standard procedure when working with transducers, 

its use will not be possible during this experiment due to the adverse effect that radiation 

will have on it.  Silicon lubricants suffer a 25% viscosity change at 5x108 rads and 

organic lubricants are subject to gas evolution and viscosity change which eventually 

results in polymerization into a solid form (Etherington, Nuclear Engineering Handbook, 

10-134, 10-146).  Because no couplant can be used, acoustic signal transfer to the 

transducers will be considerably diminished.   

It is possible to enhance signal transmission between the waveguide and the 

transducers by having the transducer/waveguide contact site polished to a very smooth 
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finish.  Applying a large, constant pressure on the transducers when seating them in 

contact with the waveguide will ensure coupling does not change during handling of the 

equipment. 

Radiation Study 

Dose Determination. 

A fundamental consideration in a radiation study is the determination of the dose 

rate and the total dose.  Dose can be described as the amount of energy that is deposited 

in a small volume of material by the radiation emanating from a source.  Mathematically, 

it is not difficult to define and calculate radiation dose.  From a practical perspective 

though, it is a very difficult task because it is not possible to directly measure the energy 

deposited in a volume of matter by radiation (Kerris, 1992, I-2). 

Dose rate can be defined as: 

 
ρ

ψ )()( EERateDose Σ
⋅=  (5) 

 
where ψ is the energy dependant flux, Σ is the energy dependant macroscopic cross 

section, and ρ is the material density.  As a spectrum of radiation energies are introduced, 

it is necessary to modify this relationship to 
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which will take into account the changes in flux and cross section as energy varies.  To 

make equation 6 practical to use, it can be approximated by a summation of group energy 

dose rates as shown in equation 7. 
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The maximum energy that a neutron is able to transfer to a nucleus during an 

elastic collision is governed by the relationship given in equation 1.  
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Every neutron collision having energy En will not result in maximum energy transfer 

however, so an average energy transfer (Qave) is a more appropriate term for use in 

determining neutron dose.  A rule of thumb for neutron scattering is that Qave = ½ Qmax 

and is exact for isotropic scattering in a center-of-mass system (Turner, 1995, 218).  

Making this substitution into equation 7 gives, 
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Using equation 8, it is possible to calculate the rate at which energy is being deposited in 

a material during irradiation given a neutron group energy spectrum and an energy 

dependant cross section for the material. 

Neutron cross sections are not always available for every material of interest in 

dose calculations.  After a thorough search of available databases, no information on 

cross sections for lead metaniobate could be found.  However, the cross section 

information for each of the elements which make up lead metaniobate (PbNb2O6) is 
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available.  A closer inspection of the macroscopic cross section provides a means to use 

the individual element cross sections to determine the total dose rate in lead metaniobate. 

The macroscopic cross section (Σ) is related to the microscopic cross section (µ): 

 
GAW

N A ρµ ⋅⋅
=Σ  (9) 

 
where NA is the number of atoms per mole (Avogadro’s number), ρ is the density of the 

element of interest, and GAW is the gram atomic weight or the equivalent weight of the 

element per mole.  Since the ratio of the elements per unit weight of lead metaniobate 

(PbNb2O6) is easily calculated, the density of each element can be found (Appendix C).  

Now it is possible to calculate the macroscopic cross section for each element allowing 

an individual element dose rate calculation to be performed.  The total dose rate will be 

the sum of the individual dose rates for lead, niobium, and oxygen. 

The total dose is found by integrating the dose rate with respect to time.  If the 

dose rate remains constant, then multiplying by the time of exposure will produce the 

total dose (Appendix D). 

Damage Mechanisms. 

The experiment will be conducted in an environment which is predominantly 

gamma and neutron radiation.  The primary effect of gamma radiation is ionization 

damage while neutrons will primarily produce displacement damage. 

Gamma radiation is electrically neutral but will interact with atoms through the 

photoelectric effect, Compton scattering, and pair production.  The first two interactions 

result in ionization and energetic secondary electrons.  Pair production produces a 
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positron-electron pair.  The photoelectric effect predominates at low photon energies and 

high atomic numbers (Z).  As photon energy increases, Compton scattering begins to 

dominate over the photoelectric effect.  Pair production has a threshold energy of 1.022 

MeV and increases in probability as Z increases (Srour, 1988, IV-4). 

The energetic secondary electrons that result from the photoelectric effect and 

Compton scattering continue to produce more secondary electrons by Rutherford 

scattering.  This process results in the creation of electron/hole pairs which can act as 

charge carriers.   

Ionizing radiation can affect the characteristics of an insulator by creating leakage 

current.  Insulators contain charge trapping centers in which radiation-induced charge 

carriers can be trapped for long periods of time.  As trapped charge accumulates, internal 

space-charge electric fields are generated which can change the insulators electrical 

characteristics.  The creation of charge carriers in the insulator can cause an increase in 

conductivity by several orders of magnitude, even in a low flux radiation field (Huth, 

page 2).  It is possible that this effect could reduce the potential difference generated by 

the piezoelectric transducer in response to an acoustic pulse. 

Neutron radiation is electrically neutral and does not interact with electrons.  

Instead, neutrons pass through the electron cloud of an atom and interact directly with the 

nucleus resulting in elastic scattering, inelastic scattering, and transmutation. 

In elastic scattering, the neutron collides with a nucleus and transfers a fraction of 

its energy to the atom.  This can dislodge the atom (figure 8) from the material’s crystal 



 

28 

lattice and is referred to as “displacement damage”.  The atoms displacement may create 

a “Frenkel pair” which consists of a vacancy and an interstitial atom. 

 

Interstitial

Vacancy

Incident neutron

Interstitial

Vacancy

Incident neutron  

Figure 8.  Displacement damage in crystal lattice 

 

Inelastic scattering involves capture of the incident neutron by the atom nucleus 

followed by subsequent emission at a lower energy.  The difference in energy between 

the incident and emitted neutron remains in the atoms nucleus leaving it in an excited 

state.  The nucleus will eventually return to its ground state by emitting a gamma ray.  

Inelastic scattering can also cause displacement damage. 

Transmutation, also known as “activation”, involves capture of the neutron in the 

nucleus and subsequent emission of a different particle, such as an alpha or beta particle.  

The emission of a different particle transmutes the atom to a different element.   
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Activation. 

Neutron activation is an effect that must be considered in the design of this 

experiment.  Radioactivity can be induced by the capture of a neutron in a sample atom’s 

nucleus.  This event causes a transmutation in the nucleus of the sample atom and often 

results in an unstable isotope which will eventually decay with a characteristic half-life 

and emit radiation.  Two activation products that will occur during this experiment are 

28Al and 55Fe (aluminum and iron are used to manufacture the transducer) which have 

half-lives of 2.25 minutes and 2.73 years respectively.  Excessive radioactivity in a 

material will result in it becoming a biological hazard and must be avoided to the extent 

that personnel involved in its handling may not exceed exposure standards prescribed in 

10 CFR Part 20.101. 

Materials subjected to the reactor environment must be given careful 

consideration.  Material attributes that will help mitigate the radiation hazard include a 

short half-life, small physical quantity, and small neutron cross section.  Although this 

precludes use of the majority of wave guide material, there are still a few viable 

candidates, which include: aluminum, titanium, Lucite, glass, quartz, silicon, and some 

ceramics.  Materials with a short half-life will decay below hazardous levels in a short 

enough time to be practical, assuming they decay to a stable isotope.  For instance, 

aluminum-28 has a two minute fifteen second half-life and therefore will decay to safe 

levels (secular equilibrium) after seven half-lives, which is less than 16 minutes (Turner, 

1995, 90). 
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Noise Generation. 

Ionizing radiation can generate noise in experiments that involve electronic 

devices.  Effects of ionization that can lead to noise include leakage current, and 

Compton current. The most important sources of noise occur where the signal originates 

and is weakest in strength.  Noise generated at this point will go through the same 

amplification process as the signal. 

Ionizing radiation can cause leakage current in insulating materials used in a 

device.  Fluctuations in leakage current inside of the transducer would result in noise 

generation at the signal origin.  The noise would then be amplified along with the signal 

resulting in increased measurement variance (Knoll, 2000, 629). 

A Compton current is generated by streaming ionizing radiation.  There is a net 

direction of the Compton electrons resulting in a current. Streaming radiation will 

primarily be in the neutron port where the coaxial cables for the transducers will be 

located.  Since the cable consists of a parallel positive and negative lead, there should be 

no net effect on the transmitted signal.  Also, since piezoelectric transducers measure 

force by the generation of a potential difference, there is no current involved and so 

Compton current should have no effect. 

Signal noise may or may not be a problem.  If the noise becomes excessive, the 

response signals may be lost or rendered so weak that the level of error is unacceptable.  

To prevent this from occurring, several precautions can be taken.  Selection of low noise, 

radiation resistant insulated cables will help minimize the contribution of noise due to 

gamma and charged particle interactions in the cable.  Also, the best precaution for 
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ensuring that reliable data is collected is to have sufficient signal strength to overcome 

the noise introduced by radiation.  This can be achieved through signal amplification. 
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III. Experimental Design 

Equipment and Test Station Configuration 

The design of the experiment begins with setting up the required equipment.  The 

configuration is illustrated on figure 9.  An HP 33120A Arbitrary Waveform Generator 

provides a discreet frequency acoustic pulse to an Ultran LC50-2 piezoelectric transducer 

(pulser), which is used to generate an acoustic pulse by taking advantage of the 

electrostrictive property of piezoelectric materials. 
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Figure 9.  Experiment test station configuration 

 

The pulser is coupled to the waveguide outside of the nuclear reactor. This allows 

the pulser to generate an acoustic pulse for propagation to the interior of the reactor 

without being exposed to the radiation field and causing radiation damage.  Three B1025 

Digital Wave transducers, which are coupled to the reactor end of the waveguide, will 
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generate a response signal to the acoustic pulse.  The response signal will travel back to 

the test station through RG-174 low noise coaxial cable.  Figure 10 shows the relative 

size of the Ultran pulser (left) and the Digital Wave transducer (right).   

 

 

Figure 10.  Relative size of pulser (left) and transducer (right) 

 

It may be informative at this point to see how the Digital Wave transducer is 

internally constructed.  Figure 11 gives a cross sectional view of the transducer.  At the 

bottom is a thin, light grey strip which is the lead metaniobate piezoelectric ceramic. The 

large, dark grey mass directly above the ceramic is a tungsten backing.  The white 

material above the tungsten is an epoxy which binds the backing and prevents it from 

moving.  An electrical wire, which has been cut, makes contact with the top of the 

piezoelectric.  The bottom of the ceramic is in contact with the transducer casing, thereby 

completing the electrical circuit. 
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Figure 11.  Cross section of B1025 AE transducer 

 

The signal is then fed into a Digital Wave PA 2040A pre-amp to increase signal 

strength and is subsequently transmitted to a Digital Wave FTM 4000 signal processor.  

The signal processor provides frequency filters, gain control, trigger control, 

amplification, and power for the pre-amplifiers. 

The processed signal pulse is captured by a LeCroy Waverunner LT584M   4-

channel digital storage oscilloscope.  Three channels handle the data acquisition for the 

individual transducers inside the reactor during testing.  The fourth channel is dedicated 

to monitoring the source signal and also serves as the trigger for capturing the signal from 

the transducers in the reactor.  The oscilloscope is able to store the captured waveforms 

digitally and transfer the information to a laptop computer for processing.  It also has the 

capability to transfer screen picture images of the captured waveforms to computer which 

allows much faster data processing decisions to be made by the operator. 
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Experimental control and data management is provided by a Dell Precision laptop 

computer.  It is equipped with an IEEE 488 interface for control of the signal generator, 

the digital oscilloscope, and data transfer. 

Waveguide Construction 

Several materials were tested for suitability as a waveguide.  Factors which 

influenced the selection included cost, ease of machining, activation half-life, signal 

attenuation and availability.  Materials that were tested included titanium, carbon steel, 

stainless steel, and several grades of aluminum.  Graphite, Pyrex glass, and Lucite were 

viable candidates based on cost, activation, and signal propagation.  Unfortunately, either 

ease of machining or availability eliminated them from consideration prior to testing.  All 

of the materials tested performed acceptably with regard to signal attenuation except 

some of the softer grades of aluminum.   

Carbon steel and stainless steel are very hard metals and are difficult to machine.  

They also have very long lived activation products.  Natural iron contains 6% of the 

isotope 54Fe.  Neutron activation of this isotope will produce 55Fe which has a half-life of 

2.7 years.  These materials were not very favorable for use in the experiment. 

Titanium has very attractive properties as a waveguide.  Primarily, it has minimal 

activation problems.  50Ti has a naturally occurring isotopic abundance of 5%.  The 

activation product 51Ti has only a 5.75 minute half-life.  Unfortunately, titanium is very 

expensive and availability was very limited.  Due to time and financial constraints it had 

to be eliminated. 
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Aluminum was chosen as the material to use for construction of the waveguide.  

100% of aluminum occurs naturally as 27Al.  Neutron capture will produce 28Al which 

has a half-life of only 2.25 minutes.  Harder grades of aluminum performed well with 

respect to low signal attenuation.  Aluminum is also reasonably priced, easily machined, 

and readily available.  20-24 T351 aircraft grade aluminum was selected for use in 

constructing a waveguide. 

A 7 foot length by 1¼ inch diameter aluminum rod was selected as a wave guide 

to the B1025 sensors that are to be inserted next to the core of the OSURR.  The Ultran 

LC50-2 pulser will attach to one end of the wave guide and at the other end the three 

B1025 sensors will be secured to the waveguide by a 1¼ inch diameter by ¼ inch thick 

aluminum plate fastened to the waveguide with a steel bolt (figure 12). 

The reactor portal at OSU that will be used for this experiment has a depth of 

approximately seven feet.  The sensors to be tested must be inserted fully, if possible, in 

order to maximize the neutron fluence in the limited amount of time available.  Eight feet 

of cable will be required to maintain connectivity with the sensors, which is a significant 

distance.  It is not possible to pre-amplify the transducer signal during the first seven feet 

of transmission because the cable is in the neutron port where streaming radiation will 

interfere with signal amplification and could possibly damage the pre-amplifiers.  Instead 

the experiment will rely on a strong source signal to overcome noise if it becomes a 

factor.  The HP 33120A Signal Generator can drive a 10 volt peak-to-peak signal which 

should provide sufficient signal strength.  The pulser is capable of being driven by 
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potentials of several hundred volts and an a/c amplifier could be inserted between the 

signal generator and the pulser if necessary. 
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Figure 12.  Wave guide apparatus 

 
To place the transducers in the radiation field near the core, the neutron port will 

have to remain open because of the rigid nature of the waveguide.  This presents a 

radiation hazard since the neutron portal is six inches in diameter and will allow 

streaming radiation to escape directly from the core.  .   

To attenuate the gamma radiation escaping from the portal, a combination of lead 

shielding and concrete bricks was used.  To absorb thermal neutron radiation, cadmium 

foil was used.  Cadmium is very effective for absorbing thermal neutrons, but there is 

also a significant fast neutron flux that must be thermalized in order to be absorbed by 

cadmium.  To do this, a six foot long by six inch diameter low density polyethylene 

cylinder was machined to allow the aluminum waveguide bar to fit in the middle.  The 

polyethylene was placed in the neutron port to fill the void space while the waveguide fit 

neatly in the center and extended into the reactor core.    
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Plastic molecules have a high density of hydrogen atoms, which have a nucleus 

consisting of one proton that is of equal mass to a neutron.  Referring back to equation 1, 

the energy a neutron is able to transfer (Qmax) to a nucleus during an elastic collision is 

governed by the relationship: 
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If the mass of the nucleus (m) is the same as that of the neutron (M) then it is possible for 

the neutron to transfer all of its energy to the nucleus, resulting in maximum neutron 

thermalization.  Polyethylene should therefore be very effective at moderating the fast 

neutron flux 

Data Sampling Method 

The initial sampling method was to generate a sinusoidal wave which swept a 

continuous range of frequencies in approximately one second.  The frequency of the 

sweep would vary linearly with time and therefore a particular frequency response could 

be determined and used for analysis and comparison.   

An example of this technique is illustrated in figure 13 with the bottom waveform 

representing the source signal generated by the LC50-2 pulser and the upper waveform 

representing the response from the B1025.  This particular example was performed with 

the pulser coupled directly to the transducer in a “face-to-face” geometry.  The result is a 

response signal that is not as distorted or attenuated as it would be if the waveguide were 

placed between them. 
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Figure 13.  Frequency sweep from 1 kHz to 500 kHz with source signal (bottom) 

compared to response signal (top) 

 

As routines for processing the raw data were developed, problems with the 

frequency sweep sampling technique became apparent.  Attempts to compare separate 

sample response values at a specific frequency resulted in standard deviations that were 

very often much greater than the mean value measured.  The problem was caused by a 

variable time delay in the trigger which resulted in a frequency shift for each sample.  

Consultation with the oscilloscope manufacturer was not successful in solving this 

problem. 

To overcome this problem, discreet frequency pulses were programmed into the 

signal generator for response analysis.  Ten frequencies were selected beginning with 100 

kHz and ending at 1 MHz using increments of 100 kHz.  The response waveforms from 

the B1025 sensors were very consistent.  Figure 14 shows the response of three 
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transducers to a 600 kHz pulse.  Channel 4 shows the source pulse generated by the 

LC50-2. 

 

 

Figure 14.  Transducer response to 600 kHz acoustic pulse 

 

The signals captured on the display of the oscilloscope are also recorded 

internally as data files of the time varying voltage response and can be transferred to a 

computer for analysis.  A 100 kHz data file is graphed in figure 15.  This particular 

sample contains 5000 data points.  Although it provides an interesting visual 

representation of the transducer’s response, the data is not in a very useful format for 

analysis and comparison with other samples. 
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Figure 15.  100 kHz response data file 

 

An investigation into the design of the digital oscilloscope produced a feature 

which allowed processing of the waveform to determine the maximum response 

measurement.  The maximum measurement could then be stored and transferred to a 

computer.  Using this feature, ten maximum responses were gathered for the ten sampling 

frequencies on all three transducers.  One sampling cycle consisted of 300 acoustic pulse 

events and required approximately six minutes to complete.  The mean value was 

determined at each frequency using the ten recorded max responses, and the standard 

deviation was calculated. 

Statistical analysis of this sampling method (figure 16) resulted in very 

reproducible pulse height measurements.  The standard deviation ranged between 3% and 

8% of the mean value for all frequencies. 
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Figure 16.  B1025 transducer response precision with 1 standard deviation error bars 

 

Measurement System Characterization 

After fabrication of the waveguide was complete, the measurement system was 

connected to the transducer/waveguide apparatus to begin characterization of the system 

in a radiation-free environment and to also characterize the effects of thermal heating. 

Figures 17, 18, and 19 show how the pulser and transducers were connected to the 

waveguide for characterization measurements.  The surface face at each end of the 

waveguide was machined and finished to a highly smooth surface to maximize acoustic 

coupling with the B1025.  No couplant was used with the B1025 sensors because of the 

adverse effect that radiation will have on it.  Characterization results are displayed in 

figure 20. 
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Figure 17.  Waveguide and transducers 

 

 

Figure 18.  Waveguide and transducers 
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Figure 19.  Pulser connection to waveguide 

 

Characterization at 24 deg. C
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Figure 20.  Bench characterization of transducers at 24oC 
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The characterization in figure 20 shows the response of three transducers to ten 

discreet frequency pulses transmitted through the waveguide.  The error bars represent 

one standard deviation based on ten separate measurements for each frequency.  Each 

individual measurement is the maximum potential generated by the transducer in 

response to the acoustic pulse generated at the pulser end of the waveguide. 

The characterization shows that each transducer has a unique response profile.  

This is due to the manufacturing process, which is not precise enough to create 

transducers with consistently equal response.  The most common variable causing 

variation in transducer response is the orientation of the crystal lattice in the ceramic 

element.  The piezoelectric coefficients are defined with respect to the lattice cell 

orientation.  If the lattice varies in the ceramic element or there are variations in the 

ceramic geometry during transducer construction, the response of the transducer will be 

affected. 

To maximize acoustic signal transfer and propagation, silicon vacuum grease was 

used as a couplant between the pulser and the waveguide.  It is important to emphasize 

that a couplant can be used because the pulser is not in the reactor.  There will not be any 

damage to the pulser or any degradation to the couplant. 

During irradiation, the transducers will increase in temperature due to absorbed 

dose.  Response values may be affected due to pyroelectric effects in the lead 

metaniobate. Thermal expansion of materials could also alter the response by changing 

the static pressure on the piezoelectric element.  Another characterization will be required 

to differentiate thermal effects from radiation damage effects. 
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It is possible to determine an upper and lower limit on the expected temperature 

range inside the neutron portal by determining the dose rate of the lead metaniobate and 

performing a radiative heat transfer analysis of the transducer/waveguide system. 

The waveguide and transducer assembly is contained inside the neutron port 

which is a sealed aluminum housing surrounded by the reactor coolant pool.  When the 

transducers are irradiated, they will heat the waveguide assembly by conduction.  As the 

assembly increases in temperature, it will radiate heat to the surrounding air according to 

the radiation heat transfer equation: 

 ( )44
∞−= TTAq wσε  (10) 

 
where q is the rate of heat flow out of the system by radiation (J/s), σ is the Stefan-

Boltzmann constant, ε is the emissivity of the surface (dimensionless), A is the surface are 

through which the heat flows (m2), Tw is the absolute surface temperature (K), and T∞ is 

the absolute ambient temperature (K) (Myers, 1987, 3). 

Dose rate is calculated using equations 5, 6, and 7.  The units of dose rate are 

joules per kilogram second (J/kg-s).  The rate of heat generation in the system can be 

approximated if the dose rate is multiplied by the total mass of the lead metaniobate.  

Although some of the energy absorbed will be lost due to excited state gamma emissions 

and decay, the calculation will at least give the maximum rate of heat generation in the 

system. 

The maximum expected temperature inside the neutron port is calculated by 

setting q in equation 9 equal to the rate of heat generation in the system and solving for 

the surface temperature Tw.  To solve this equation, the emissivity of the aluminum 
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waveguide must be known.  Emissivity for industrial grade aluminum varies between 0.1 

and 0.3, depending on the extent of oxidation on the surface (Infrared Measurement, 

2004).  Appendix F contains the heat transfer calculations. 

The maximum expected temperature was 31 degrees Celsius using an emissivity 

of 0.1 and a heat sink temperature of 30 degrees Celsius.  The minimum expected 

temperature is the heat sink which is the cooling pool in this case.  The temperature in the 

pool ranged from 30 to 35 degrees Celsius when the reactor power was at 450 kW.  

To characterize the effects of thermal heating on the system, a chemical flask 

heating blanket was placed around the transducer end of the apparatus (figure 21) and the 

temperature was increased to the maximum rated operating range of the transducers, 

which is 100oC.  Temperature was monitored with a standard thermometer inserted inside 

the blanket next to the transducers. 

 

 

Figure 21.  Thermal characterization 
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After reaching 100oC, the response of the transducers decreased considerably as 

shown in figure 22.  As the temperature was reduced back to room temperature, the 

response did not recover and degradation continued to increase on several frequencies.  

Table 5 summarizes these findings and expresses the degradation as the average decrease 

for all ten frequencies sampled. 

Response Change at 100 deg. C
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Figure 22.  Transducer response change at 100oC 

 

The thermal characterization was performed the day prior to the scheduled 

transport of the system to the OSU reactor.  Due to time limitation, further investigation 

of the thermal effect on the transducer/waveguide system was postponed until after 

completion of the irradiation phase of the experiment. 
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Table 5.  Average transducer response decrease 
 Response decrease 

at 100oC 
Response decrease after 
returning to 23oC 

Channel 1 (sn 7) 69% 72% 

Channel 2 (sn 11) 44% 55% 

Channel 3 (sn 9) 38% 69% 

 

 

Since response did not immediately recover with cooling, the apparent effect of 

thermal heating was permanent degradation of response.  To ensure the best data 

acquisition during irradiation, the two transducers with a lower response (sn7 and sn9) 

were replaced with the last two remaining transducers.  The irradiation at OSU was 

performed using transducers sn10, sn11, and sn12.  Table 6 summarizes where each 

transducer was used during the execution of the experiment. 

 

Table 6.  Transducer tracking sheet 
Serial 
Number 

Characterization Thermal 
Characterization

Irradiation Internal 
Study 

Thermal 
Effects 

7 X X  X  

9 X X   X 

10   X   

11 X X X   

12   X   
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The internal study in table 6 consisted of cutting transducer sn7 in half in order to 

understand how it is constructed.  Knowing how it is designed could help in interpreting 

the possible mechanisms of radiation damage to the transducers. 

A second thermal experiment was performed on transducer serial number 9.  It 

was brought to 100oC in two separate test sessions.  During the first session, silicon 

vacuum grease was applied between the transducer and the waveguide.  During the 

second session no couplant was used, as was the case during the initial test.  The intent of 

this experiment was to determine whether thermal heating was causing response changes 

due to effects on the internal materials of the transducer or whether the response changes 

were due to external changes in coupling due to the expansion and contraction of the 

metal surfaces. 

Couplant was used during the first session because during material expansion and 

contraction, voids may be created between the transducer and waveguide surfaces.  This 

causes an acoustic impedance mismatch between the air-filled voids and the metal 

surfaces which results in a large percentage of acoustic energy being reflected instead of 

transmitted into the transducer.  Couplant displaces the air and makes it possible to get 

more sound energy into the test material so that a greater acoustic signal can be received.   

Examination of figure 23 indicates that when couplant is used, no significant 

change in signal response occurs. 
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Heat Effects with Grease
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Figure 23.  Thermal heating of transducer sn9 with couplant 

 

When no couplant is used, the response signal varies significantly with increasing 

temperature as can be seen from figure 24. 
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Figure 24.  Thermal heating of transducer sn9 without couplant 
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An important detail in comparing figures 23 and 24 is that using couplant 

increases transducer response by a factor of about four. 

Once the system had been characterized in the laboratory, a test run was 

performed with the waveguide and transducers inserted into the OSU reactor while it was 

shut down.  Response measurements were recorded to establish an in situ characterization 

of the test station (figure 25).  This information provides a baseline measurement for use 

in interpreting the experimental results. 
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Figure 25.  In situ characterization 

 

Experimental Procedure 

The transducer irradiation goal was to achieve 1x1017 cm-2 neutron fluence.  A 

quick back-of-the-envelope calculation is useful to approximate how much time it would 

take to achieve that fluence.  The OSU Reactor has a maximum power rating of 500 kW.  
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Running at 450 kW, the reactor has an approximate neutron flux of 2x1012 cm-2 s-1.  If the 

reactor were maintained at that power setting it would require 5x104 seconds, or about 14 

hours of irradiation time to achieve the fluence goal.  This is a minimum time calculation 

since the reactor will not always be running at 450 kW. 

Initially, the reactor was powered up to only 50 kW in order to produce a neutron 

flux of approximately 1011 cm-2 s-1.  This allowed a fluence of 1015 cm-2 to be achieved in 

104 seconds, or 2.8 hours.  This fluence is equivalent to a typical pulse in the ACRR at 

Sandia National Laboratory.  Gradually approaching this fluence at 50 kW allowed more 

time to collect data in case the transducers should fail very early in the experiment.   

During the first two days of irradiation, power was increased gradually to see how 

the transducers would respond.  Since there was no published literature available on 

experiments of this nature, it was unknown how the transducers would be affected by 

either dose rate or total dose.  The final two days were executed with the reactor running 

at full power.  The entire irradiation experiment was completed over the course of four 

days. 

When the reactor was shut down at close of business, sampling continued 

overnight to observe the recovery that occurred in the transducers.  This was 

accomplished using computer controls to automate the data collection process.  Although 

it would have been ideal to remove the waveguide from the neutron port to eliminate 

residual gamma radiation effects on the recovery behavior, activation of the entire test 

apparatus made it too radioactive to handle. 
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IV. Results and Analysis 

Thermal Effects 

The intent of this experiment was to determine whether thermal heating was 

causing response changes due to effects on the internal materials of the transducer or 

whether the response changes were due to external changes in coupling caused by the 

expansion and contraction of the metal surfaces. 

Figure 26 indicates that thermal heating has little effect on the internal function of 

the transducer, at least at the temperatures observed.  The results support the conclusion 

that thermal expansion of materials affects the coupling of the system if no couplant is 

applied.   

Figure 27 shows that coupling is much worse between the transducers and the 

waveguide because the response magnitude is much smaller.  It also illustrates a change 

in coupling with increased temperature.  Both of these figures support the conclusion that 

it is possible the change in response of the transducers during the initial heat 

characterization was largely due to expansion of metal surfaces, which changed the 

coupling of the system. 

It is also interesting to note that the heating response profile of transducer sn9 in 

figure 26 is nearly equivalent to its initial room temperature response profile in figure 20 

while in figure 27 it is much lower.  When the initial response profile was conducted, the 

finish on the surface of the waveguide was extremely smooth and no couplant was used.  

Figure 26 shows sn9 having nearly the same response as initially, but this time couplant 
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Heat Effects with Grease
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Figure 26.  Thermal heating of transducer sn9 with couplant 
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Figure 27.  Thermal heating of transducer sn9 without couplant 
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is used.  Two conclusions can be drawn from this observation.  The first conclusion is 

that damage is occurring on the surface of the waveguide creating voids between the 

transducer and waveguide interface.  This changes the impedance which results in 

reducing the transducer response.  The damage is occurring from the numerous 

transducer changes between experiments and from expansion and contraction during the 

thermal heating experiments.  The second conclusion is a consequence of the first.  Since 

transducer sn9 appears to have a fully recovered response when couplant is used, it is 

apparent that no permanent damage was done to the transducers in the initial thermal 

effects characterization.  Transducer response changes during heating were primarily due 

to changes in coupling. 

Irradiation Results 

Raw measurement text files were transferred to a spreadsheet and organized by 

transducer.  Each point that is plotted on a graph represents a mean value of ten separate 

measurements.  Sampling of the transducers always occurred simultaneously, therefore at 

any sample time each transducer will have the same radiation dose. 

Figures 28 and 29 present the time changing response of the transducers at two 

frequencies.  Appendix A contains similar data on the remaining eight frequencies that 

were studied. 

The vertical lines through the graph delineate periods of irradiation from periods 

when the reactor was shut down.  During the periods of reactor inactivity, the recovery 

behavior of the transducers can be seen.  The abscissa represents the total number of 

hours transpired since initiation of the experiment.  The ordinate contains the response, 



 

57 

400kHz

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 10 20 30 40 50 60 70 80 90 100

time (hrs)

po
te

nt
ia

l (
vo

lts
)

C1
C2
C3

1.04x1016 cm-2

Recovery Recovery Recovery Recovery

4.64x1016 cm-2 9.8x1016 cm-2 1.5x1017 cm-2

 

Figure 28.  Irradiation response at 400 kHz 
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Figure 29.  Irradiation response at 900 kHz 
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measured in volts, of the transducers to the acoustic pulse signal.  Finally, the cumulative 

neutron fluence as a function of time is labeled at the end of each irradiation period and is 

summarized in table 7. 

 

Table 7.  Neutron fluence as a function of time 
Time (hours) Fluence (neutrons per cm2) 

6 1.04 x 1016 
31 4.64 x 1016 
53 9.8 x 1016 
78 1.5 x 1017 

 

A comparison of the initial response values at 400 kHz and 900 kHz with the in 

situ characterization in figure 30 shows very good correlation ensuring that nothing has 

happened to the waveguide apparatus and caused a change in coupling or performance 

since the characterization was performed.  
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Figure 30.  In situ characterization 
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It is apparent from the response measurements over time that transducers of the 

same design or series do not necessarily perform the same and are not affected by 

radiation quite the same.  Although there are some distinct differences between each of 

the transducers at any given frequency, there are also some common trends.   

Initial Phase Radiation Response. 

During this phase, the response consistently degrades during irradiation.  The rate 

of degradation varies between transducers and with frequency. When the reactor is shut 

down, recovery is poor which indicates that the damage to the transducer is permanent.  

Permanent damage is defined as failure to recover to the response level established prior 

to that session of irradiation. 

A possible mechanism for the decrease in transducer response is illustrated in 

figure 36.  The elimination of a ferroelectric dipole in the ceramic crystal lattice is  
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Figure 31.  Neutron damage mechanism 

 

accomplished by a neutron colliding with one of the dipole atoms and displacing it.  The 

displaced atom is forced into the crystal lattice resulting in an interstitial and a vacancy.  
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As the dipole damage accumulates, the potential difference (voltage) generated in 

response to the acoustic pulse begins to deteriorate. 

Intermediate Phase Radiation Response. 

As degradation continues to occur at most frequencies, there is also an emerging 

pattern in the response.  At some frequencies the response begins to increase as time of 

irradiation increases.  It is interesting to note that regardless of whether the response is 

increasing or decreasing, when the reactor is shut down the response changes suddenly in 

the opposite direction of the trend.   An example can be seen on channel 1 at 400 kHz.  At 

the 50 hour and 75 hour time windows, channel 1 steadily increases in response until the 

reactor is shut down.  The response immediately reduces by nearly 50% and then slowly 

shows some recovery.  This observation suggests there is a transient effect occurring in 

the transducer which results in an artificial improvement in the transducers performance.   

This phase is also marked by a sizable recovery but there is still indication of 

permanent damage.  At 900 kHz, channel 1 and 2 both show a steadily increasing 

response trend in the 28 hour window.  When the reactor is shut down, the response 

immediately decreases and then slowly begins to make a recovery but never reaches the 

same response level established prior to that session of irradiation.  

Final Phase Radiation Response. 

The transient effect that was observed in the intermediate phase is apparent during 

irradiation in almost every frequency.  When the reactor is shut down the response 

returns to nearly the same level it was prior to that session of irradiation.  This can be 

observed in the 60 and 90 hour windows at both 400 kHz and 900 kHz.  Since the 



 

61 

transducers recover to the response level established prior to that session of irradiation, 

no further permanent damage is being inflicted on them. 

A possible mechanism for the transient effect on response that is observed is 

depicted in figure 32.  The displacement damage created by neutron radiation becomes a 

trap for the charge carriers produced by ionizing radiation.  The trapped charge 

temporarily replaces the atom that was dislocated from the ferroelectric crystal cell and 

restores the dipole moment.  As irradiation time increases, displacement damage 
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Figure 32.  Transient effect caused by ionizing radiation 

 

increases resulting in more trapped charge intermediates and an increasing piezoelectric 

response.  When the reactor is shut down, the rate of ionization decreases and 

recombination of charge carriers eliminates the temporary dipoles resulting in an 

immediate decrease in transducer response. 

Although all three transducers exhibited these general trends, they did not 

necessarily arrive at each phase at the same time.  This is also the case for each 
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transducer with regard to frequency.  Some frequencies reached permanent damage 

equilibrium prior to others and some frequencies never reached damage equilibrium at 

all, as was the case with C2 at 300 kHz (Appendix A). 

Appendix B compares the relative response change of the transducers at various 

dose rates for each frequency.  Since each transducer has a unique response for each 

frequency, plotting the relative response change will allow better comparison of 

irradiation effects between the three transducers.  If there are any trends in response 

change which show a frequency or dose rate dependence, it should become apparent in 

the data that has been graphed. 

Unfortunately, no frequency dependant trends were consistently identified for all 

three transducers.  The graphs do offer a better understanding of how all frequencies are 

being affected for each transducer however.  At the end of irradiation, channel 1 clearly 

indicates that the transient increased response is frequency dependant for that transducer.  

Low frequencies do not experience increased response while higher frequencies are 

increased substantially (figures 65 and 68).  This is not true for the other two transducers 

however. 
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V.  Conclusions and Recommendations 

Conclusions 

Permanent damage to the transducers resulted from exposure to the radiation field 

inside the OSURR as noted by the degradation of response at all frequencies tested on 

each transducer.  Based on the assumption that gamma radiation effects are transient, the 

damage must be neutron induced and is therefore probably caused by displacement of 

atoms in the lead metaniobate crystal lattice. 

At the beginning of irradiation it was suspected that the pyroelectric effect, caused 

by joule heating during irradiation, may be responsible for some of the degradation in 

transducer response.  To determine if this was likely or not, dose rate was calculated 

(J/kg) and then divided by the specific heat of lead metaniobate (J/kg C).  The rate of 

temperature increase at full reactor power was determined to be one degree every 482 

seconds (Appendix E).   

A heat transfer calculation was done on the system at full power to see how high 

the surface temperature of the waveguide/transducer apparatus would rise before reaching 

equilibrium with the surrounding air.  The air temperature was assumed to be the same as 

the cooling pool.  An aluminum tubing wall separates the air from the pool and the pool 

is considered to be an infinite heat sink.  The results show that the expected temperature 

increase from joule heating is not more than 1 degree K.  

During the first day of irradiation the power was at 50 kW for three hours and 100 

kW for another three hours.  This was the period in which most response degradation 

occurred. The rate of calculated temperature increase would have been 72 minutes and 36 
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minutes per degree K respectively.  These calculations do not support the possibility of 

the pyroelectric effect causing response degradation.  Furthermore, the thermal effects 

experiment conducted after irradiation showed that the transducer had the same response 

profile at 100oC as at room temperature when couplant was used indicating the 

pyroelectric effect is negligible and transducer internal expansion is not responsible for 

changes in response during thermal heating.  Coupling changes due to thermal heating 

did change the response of the transducers, but probably had no impact during the 

irradiation experiment because the calculated rate of heat transfer exceeded the rate at 

which heat was being generated in the transducers. 

The transducers received a total neutron dose of 392 krad after four days of 

irradiation (see Appendix D for calculations).  Although response was significantly 

reduced, the devices never reached a point where they failed to give a reproducible 

response with a standard deviation that was less than 10% of the mean value measured.  

The oscilloscope’s minimum voltage resolution is 2 mV while the lowest response 

recorded during the experiment was about 10 mV.  If the response had continued to 

degrade, there was still 40 dB of signal amplification available in the signal processing 

equipment that was never used.  The signal-to-noise ratio was also very good as indicated 

by the small standard deviations during sampling.  The transducer’s dose limit is 

therefore greater than 392 krad. 

Recovery from displacement damage was not complete for any of the transducers 

although channel 1 (sn10) seemed to receive much more damage than the other two.  But 

it was also significantly more sensitive than the others at the beginning of the experiment. 
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With additional time, the transducers may recover a little more but it is unlikely they will 

ever regain their original sensitivity.  It may be possible to produce more annealing with a 

higher temperature but room temperature is not adequate. 

System coupling caused the most difficulty of any other effect during the 

execution of this experiment.  Coupling changes during thermal characterization created 

much confusion about what was causing transducer response degradation.  It caused the 

false conclusion that the transducers were permanently damaged from joule heating.  It 

also led to investigating the pyroelectric effect as a possible cause of degraded response. 

The idea of using an aluminum rod as a waveguide for in situ neutron damage 

testing was remarkably successful.  The system was reliable and provided consistent and 

very reproducible results.  It was rugged, simple, reusable, and easy to construct. 

The data sampling method was also very successful in producing measurements 

with a small standard deviation.  Unfortunately, it required many hours of manual data 

processing and consumed a large amount of time in preparation.   

Recommendations 

Although the primary effect of neutron radiation is displacement damage, it also 

causes ionization.  Likewise, ionizing radiation also causes some displacement. Because 

of this, it is difficult to distinguish which type of radiation is responsible for the various 

effects that were observed in the results of the experiment. 

An in situ gamma radiation characterization on the transducers before reactor 

irradiation would help to delineate gamma induced effects from neutron effects.  In this 

way it would be possible to observe how gamma radiation affects transducer response 
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prior to displacement damage.  This information would help considerably in 

understanding the impact that neutrons have on the performance of the transducers.  

Furthermore, another in situ gamma radiation characterization after irradiation in 

the reactor would offer even more information on neutron damage because it could be 

compared to the characterization when there was no neutron damage.  Any difference 

would be directly attributable to neutron displacement damage. 

An extended in situ gamma radiation study might also provide information on 

whether ionizing radiation is causing conductivity changes in insulating materials inside 

the transducer.  Reduced response magnitudes would not necessarily show that leakage 

current is increasing because of the possibility of other damage mechanisms, but if 

response magnitudes did not decrease it would show that leakage current is not a damage 

mechanism. 

A thermocouple could be added in the neutron port so that thermal effects could 

be measured directly instead of being deduced.  Although it is not possible to measure the 

piezoelectric element directly because it is encased in the transducer, a thermocouple 

wire attached to the aluminum bar in close proximity to the transducers would give a very 

close approximation since the metal case of the transducer will rapidly conduct any 

significant heat to the waveguide. 

An investigation into the effects of radiation on potential radiation resistant 

couplants could also prove to be very beneficial.  If coupling changes are occurring due 

to thermal expansion during irradiation, then applying a couplant would eliminate the 
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problem and provide more accurate results.  But first it needs to be shown that the 

couplant properties do not change with irradiation. 

Processing the raw sampling data was very time intensive and prone to error 

because it was not automated.  A great amount of time was also spent in developing the 

sampling system and making it work.  Much more experimentation could have been 

accomplished if an acoustic emission measuring system were simply purchased.  This 

would allow more time to be spent for conducting in situ gamma cell irradiations or 

multiple neutron damage assessments. 

Finally, having data on charge carrier generation rate and mobility in lead 

metaniobate would be very helpful in investigating damage mechanisms that involve bulk 

trapped charge and charge migration.  Follow on research for this project could include 

developing an experiment to gather this kind of information and could contribute to a 

better understanding of the neutron damage mechanism to lead metaniobate. 
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Appendix A: Irradiation Data 

The log of irradiation of the transducers is shown in table 8.  The changes in the 

power of the reactor are sequential; meaning that irradiation always started at a lower 

power and progressed to the highest power.  Initially, the plan required the power to be 

kept at 50 kW until a fluence of 1015 was achieved, which is the equivalent neutron 

fluence in a single pulse at the ACRR.  Afterwards, the power would be increased to 

maximum (450 kW) to achieve as much fluence as possible in the scheduled time (4 

days) for irradiation.  The plan had to be altered because of high radiation levels 

occurring outside the reactor due to streaming radiation from the neutron port. 

On day two, shielding was increased around the neutron port which reduced the 

radiation levels to an acceptable level and allowed the power to eventually be increased 

to maximum. 

Table 8.  Irradiation schedule 
Day Power (kW) Time (sec) Flux Fluence Total Fluence 

1 50 11,220 2.68E11 3.011E15  
 100 7800 5.37E11 4.186E15  
 200 3000 1.07E12 3.2E15 1.04E16 
      
2 100 600 5.37E11 3.2E14  
 200 2400 1.07E12 2.58E15  
 300 3600 1.61E12 5.8E15  
 400 1200 2.147E12 2.58E15  
 450 10,200 2.415E12 2.46E16 4.64E16 
      
3 450 21,600 2.415E12 5.2E16 9.82E16 
      
4 450 21,600 2.415E12 5.2E16 1.5E17 

 

The irradiation data is shown plotted by frequency in figures 33 through 40. 
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Figure 33.  Irradiation response at 100 kHz 
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Figure 34.  Irradiation response at 200 kHz 
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Figure 35.  Irradiation response at 300 kHz 
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Figure 36.  Irradiation response at 500 kHz 
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Figure 37.  Irradiation response at 600 kHz 
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Figure 38.  Irradiation response at 700 kHz 
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Figure 39.  Irradiation response at 800 kHz 
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Figure 40.  Irradiation response at 1 MHz 
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Appendix B: Relative Response Change by Frequency 

The relative response change at various dose rates is compared in two frequency 

groups for each of the three channels used.  Figures 41 through 70 summarize the 

response change of the three transducers during the four days of irradiation.  The data is 

plotted in two frequency groups to reduce the amount of data given in one graph and to 

help in identifying trends that may be related to low or high frequencies.  The lower 

frequency group consists of 100 thru 500 kHz and the higher frequency group is 600 thru 

1000 kHz. 

The initial response voltage (Vo) used in plotting the data is taken from the first 

data sampling for that day of irradiation.  It is important to remember that on day 1 and 

day 2 the dose rate was being progressively increased, so Vo represents the initial 

response at the initial dose rate.  Table 8 in appendix A shows the progression of 

irradiation.  The power levels that are plotted were selected because enough data was 

taken to show any possible trends.  For instance, on day 2 the power was not kept at 100, 

200, 300, or 400 kilowatts long enough to collect sufficient data for plotting. 
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Figure 41.  C1 lower frequency response change at 50 kW 
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Figure 42.  C2 lower frequency response change at 50 kW 
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Figure 43.  C3 lower frequency response change at 50 kW 
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Figure 44.  C1 higher frequency response change at 50 kW 
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Figure 45.  C2 higher frequency response change at 50 kW 
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Figure 46.  C3 higher frequency response change at 50 kW 
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Figure 47.  C1 lower frequency response change at 100 kW 
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Figure 48.  C2 lower frequency response change at 100 kW 
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Figure 49.  C3 lower frequency response change at 100 kW 
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Figure 50.  C1 higher frequency response change at 100 kW 
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Figure 51.  C2 higher frequency response change at 100 kW 
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Figure 52.  C3 higher frequency response change at 100 kW 

 



 

80 

 

450 kW / C1 / day 2

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

2E+16 3E+16 4E+16

neutron fluence

de
lta

 V
 (V

-V
o 

/ V
o) 100

200
300
400
500

 

Figure 53.  C1 lower frequency response change at 450 kW on day 2 
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Figure 54.  C2 lower frequency response change at 450 kW on day 2 
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Figure 55.  C3 lower frequency response change at 450 kW on day 2 
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Figure 56.  C1 higher frequency response change at 450 kW on day 2 
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Figure 57.  C2 higher frequency response change at 450 kW on day 2 
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Figure 58.  C3 higher frequency response change at 450 kW on day 2 
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Figure 59.  C1 lower frequency response change at 450 kW on day 3 
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Figure 60.  C2 lower frequency response change at 450 kW on day 3 
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Figure 61.  C3 lower frequency response change at 450 kW on day 3 
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Figure 62.  C1 higher frequency response change at 450 kW on day 3 
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Figure 63.  C2 higher frequency response change at 450 kW on day 3 
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Figure 64.  C3 higher frequency response change at 450 kW on day 3 
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Figure 65.  C1 lower frequency response change at 450 kW on day 4 
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Figure 66.  C2 lower frequency response change at 450 kW on day 4 
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Figure 67.  C3 lower frequency response change at 450 kW on day 4 
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Figure 68.  C1 higher frequency response change at 450 kW on day 4 
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Figure 69.  C2 higher frequency response change at 450 kW on day 4 
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Figure 70.  C3 higher frequency response change at 450 kW on day 4 
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Appendix C: Macroscopic Cross Section for Lead Metaniobate 

N Nb 6.022 10 23
⋅ mol 1−

⋅ ρ Nb⋅
1

GAW
⋅:= Niobium atom density.

σNb20MeV 3.48 10 24−⋅ cm 2⋅:= microscopic cross section for Nb at 20 MeV.

Σ Nb N Nb σNb20MeV⋅:= Σ Nb 0.01 cm 1−
=

So, calculate the atom density of each element to use in determining the macroscopic 
cross section for that element in lead metaniobate:

N Pb 6.022 10 23⋅ mol 1−⋅ ρ Pb⋅
1

GAW
⋅:= N Pb 3.232 10 21× cm 3−= (more to follow on 

Pb)

N Nb 6.022 10 23
⋅ mol 1−

⋅ ρ Nb⋅
1

GAW
⋅:= N Nb 2.904 10 21

× cm 3−
=

N O 6.022 10 23⋅ mol 1−⋅ ρ O⋅
1

GAW
⋅:= N O 1.499 10 21× cm 3−=

Lead has three naturally occuring isotopes which have different cross section data, so it 
is necessary to determine the density for each isotope.  Pb206 and Pb207 each make up 
about 25% of naturally occuring isotopes while Pb208 accounts for the other 50%.  
Because the macroscopic cross section is proportional to the element density, the 
isotope densities are proportional to their naturally occurring abundance.

N Pb206 N Pb .25⋅:= N Pb206 8.08 10 20
× cm 3−

=

N Pb207 N Pb .25⋅:= N Pb207 8.08 10 20× cm 3−=

N Pb208 N Pb .5⋅:= N Pb208 1.616 10 21
× cm 3−

=

PbNb 2 O 6  properties: Pb Nb 2 O 6

ρ 6.2
gm

cm 3
⋅:= GAW 207

gm
mol

⋅ 2 93⋅( )
gm
mol

⋅+ 6 16⋅( )
gm
mol

⋅+:=

GAW 489
gm
mol

=

Element weight fractions:

Pb: 207 gm⋅

489 gm⋅
0.423= Nb: 186 gm⋅

489 gm⋅
0.38= O: 96 gm⋅

489 gm⋅
0.196=

Element densities per unit volume  PbNb 2 O 6  :  

ρ Pb ρ
207 gm⋅

489 gm⋅
⋅:= ρ Nb ρ

186 gm⋅

489 gm⋅
⋅:= ρ O ρ

96 gm⋅

489 gm⋅
⋅:=

ρ Pb 2.625
gm

cm 3
= ρ Nb 2.358

gm

cm 3
= ρ O 1.217

gm

cm 3
=

The macroscopic cross section for an individual element in  PbNb 2 O 6 is found by 
determing the atom density and multiplying by the microscopic cross section :
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Appendix D: Total Dose Calculation 

An example of the dose calculation is done for the isotope Pb-206.  Calculations 

were performed as described in equation 8.   

A differential flux distribution was obtained from OSU for their research reactor 

running at 300 kW and converted to a group flux distribution as shown in columns 1 and 

2 of figure 71. 

 

OSU 
Energy 
Group 
(eV)

Neutron 
Energy 
Group Flux 
(300 kW)

Group 
Energy Flux 
(J*cm-2*s-1)

Parsed 
Pb206 
Energy 
Group (eV)

Pb206 
Cross 
Section 
(cm2)

Multiply by atom 
density to get Pb206 
Macro Cross Section 
(cm-1)

Pb206 MAC 
(cm2/g) (macro 
cross sec / Pb 
density)

Average energy loss 
from neutron scatter 
(Qmax/2)(Turner 
p.218)

Dose Rate 
at 300 kW 
(J*g-1*s-1)

Dose Rate 
(Mrad / s)

Total Dose Rate 
at 300 kW (Mrad 
/ s)

1.00E-04 0.00E+00 0.00E+00 2.53E-02 2.39E-26 1.93E-05 2.94E-05 0.00961516 0.00E+00 0.00E+00 5.32E-07
1.05E-04 8.52E+05 1.43E-17 2.53E-02 2.39E-26 1.93E-05 2.94E-05 0.00961516 4.05E-24 4.05E-25
1.10E-04 8.93E+05 1.57E-17 2.53E-02 2.39E-26 1.93E-05 2.94E-05 0.00961516 4.45E-24 4.45E-25
1.15E-04 9.34E+05 1.72E-17 2.53E-02 2.39E-26 1.93E-05 2.94E-05 0.00961516 4.86E-24 4.86E-25
1.20E-04 9.76E+05 1.87E-17 2.53E-02 2.39E-26 1.93E-05 2.94E-05 0.00961516 5.30E-24 5.30E-25
1.27E-04 1.44E+06 2.92E-17 2.53E-02 2.39E-26 1.93E-05 2.94E-05 0.00961516 8.26E-24 8.26E-25
1.35E-04 1.74E+06 3.76E-17 2.53E-02 2.39E-26 1.93E-05 2.94E-05 0.00961516 1.06E-23 1.06E-24
1.42E-04 1.61E+06 3.66E-17 2.53E-02 2.39E-26 1.93E-05 2.94E-05 0.00961516 1.04E-23 1.04E-24
1.50E-04 1.94E+06 4.66E-17 2.53E-02 2.39E-26 1.93E-05 2.94E-05 0.00961516 1.32E-23 1.32E-24
2.55E-02 2.31E+10 9.41E-11 1.00E+00 3.80E-27 3.07E-06 4.68E-06 0.00961516 4.23E-18 4.23E-19
2.70E-02 2.31E+10 9.96E-11 1.00E+00 3.80E-27 3.07E-06 4.68E-06 0.00961516 4.48E-18 4.48E-19
2.80E-02 1.53E+10 6.86E-11 1.00E+00 3.80E-27 3.07E-06 4.68E-06 0.00961516 3.09E-18 3.09E-19  

Figure 71.  Pb206 dose rate calculation at 300 kW. 

 

In column 3 the group energy is multiplied by the group flux to create a group 

energy flux (eV/cm2-s) and then converted from electron volts to joules.  The ENDF file 

for Pb-206 has been organized to match the mesh of the OSU energy flux distribution.  

Neutron group energies less than or equal to the Pb-206 group energy are aligned to 

correspond with the appropriate cross section.  On row 10 the neutron group energy 

exceeds the lead group energy so the next higher energy group of the Pb-206 ENDF mesh 

is used.  In column 6, the atom density calculated in Appendix C is used to convert the 

microscopic cross section to the macroscopic cross section. Column 7 shows the average 
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fraction of energy that can be transferred to the nucleus by a neutron as described by 

equation 11 (Turner, 1995, 218): 

 
( )2

2
mM

mME
Q n

ave
+

=  (11) 

 

The dose rate is then determined as the product of the group energy flux, the 

macroscopic cross section divided by density, and the average energy fraction as 

described with equation 8.  The last column is the sum of all dose rates at each energy 

group. 

Flux is proportional to the power of the reactor; therefore the dose rate at any 

power is also proportional.  The dose rate at 300 kW was calculated in the figure 71, so 

the dose rate for all other power settings used during the experiment is shown in figure 

72.  The total time of transducer exposure at each dose rate is used to calculate the total 

dose for Pb-206.  

 

Power
Dose rate 
(Mrad/s)

Total time 
at dose 
rate (sec)

Dose 
(Mrad)

1 Mrad=1E5 Gy 
1 Gy=1 J/Kg

300 kW 5.32E-07 3600 0.001916
50 kW 8.87E-08 11220 0.000995
100 kW 1.77E-07 8400 0.00149
200 kW 3.55E-07 4800 0.001703
450 kW 7.98E-07 53400 0.042631

Total: 0.048735  

Figure 72.  Pb206 dose calculation at all powers used in reactor. 
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Finally, the total dose is determined by adding the individual dose for each atom 

and isotope in a lead Metaniobate crystal cell.  Figure 73 shows the total dose calculation. 

 

Mrad Gy (J/Kg)
Nb 0.074509 7.45092E+03
O 0.173118 1.73118E+04
Pb206 0.048735 4.87353E+03
Pb207 0.048902 4.89019E+03
Pb208 0.047162 4.71622E+03

Total: 0.392427 3.92427E+04

392 krad 39.2 kGy  

Figure 73.  Total dose to lead metaniobate. 
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Appendix E: Rate of Heating for Lead Metaniobate 

again, negligible heating of the steel case  due 
to thermal neutrons.

Doserate
Cv

6.175 10 9−
×

K
s

=

(Handbook of Applied Eng. 
Science, p. 432).

Cv 0.502
J

gm K⋅
⋅:=Doserate 3.1 10 6−

⋅
Gy
s

⋅:=

a back of the envelope calculation for the heating effects on stainless steel using only
the thermal spectrum (0.4 eV, Turner p. 222) and the thermal cross section for steel
of 3 barns (Handbook of Applied Eng. Science, p. 432).

1 degree every 482 seconds.

450
300

Doserate⋅

Cv
2.076 10 3−

×
K
s

=

And heating would be:

450
300

Doserate⋅ 0.644
J

kg s⋅
=

At max reactor power (450 kW), the dose rate would be:

1 degree every 723 seconds.Doserate
Cv

1.384 10 3−
×

K
s

=

dose rate using total cross sections.Doserate 4.29 10 1−
⋅

Gy
s

⋅:=

Cv 0.31
J

gm K⋅
⋅:=

specific heat for lead metaniobate
(Admiralty Materials Laboratory
publication, fig. 16)

To determine heating rate in the lead metaniobate due to 
radiation interaction, I use dose rate at 300 kW and specific heat.
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Appendix F: Heat Transfer Calculations 

To approximate the temperature increase inside the transducers during irradiation, 

the dose rate (J/kg-s) is used to determine the rate at which energy is being deposited into 

the transducer.  The energy manifests itself as heat and conductively flows into the 

aluminum rod.  Equation 10 is then used to graph the rate at which heat is radiated away 

from the aluminum rod as a function of the surface temperature of the rod.  An 

assumption made in this model is that the rate of conductive heat transfer from the 

transducer to the aluminum rod is negligible in comparison to the radiative heat transfer 

rate to the surrounding air. 

 

 

Aluminum Rod

Transducer

½ inch

18 inches

1 ¼
inch

Surface of the aluminum rod
radiates energy away

Heat source inside each ½ inch transducer is a 85 mm3

lead metaniobate crystal

Aluminum Rod

Transducer

½ inch

18 inches

1 ¼
inch

Surface of the aluminum rod
radiates energy away

Heat source inside each ½ inch transducer is a 85 mm3

lead metaniobate crystal
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perimeter π diameter⋅:=

diameter
5
4

in⋅:=
 Dimensions of radiative cooling 
 portion of waveguide.

length 18 in⋅:=

 Temperature of heat sink (reactor pool) was approx. 30 
 deg. C.

Tinfinity 303 K⋅:=

 Emissivity (dimensionless....reference internet....ranged from 0.1-0.3 
     for Aluminum)

ε 0.1:=

 Stefan-Boltzmann Constant σ 9.733 10 9−
×

J

s m2
⋅ K⋅

⋅:=

 Now determine temperature at which radiative cooling is the same as  
 Energy flowing into the system.

Energy in 1.016 10 3−
×

J
s

=
Energy in Doserate LMN mass⋅:=

LMN mass 1.578 103
× mg=

LMN mass ρ Voltotal⋅:=

Voltotal 3 vol⋅:=vol h π⋅ r2:=r .3 cm⋅:=h .3 cm⋅:=

 Quantity of energy input to system by 3 lead metaniobate 
 transducer elements:

 Density of lead metaniobate. ρ 6.2
gm

cm3
⋅:=

See Appendix D Dose rate at 450kW. Doserate 0.644
J

kg s⋅
⋅:=
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 Surface area of cooling portion 
 of waveguide.A length perimeter⋅:= A 0.046m2

=

 Radiative Cooling: EnergyR Ts( ) σ ε⋅ A⋅ Ts
4 Tinfinity

4
−⎛

⎝
⎞
⎠⋅:=

 Plotting the radiative energy transfer rate as a function of surface temperature, 
 the temperature that radiates energy at the same rate as it is being internally
 generated by the dose to the lead metaniobate can be found.

302 302.5 303 303.5 304 304.5 305
0.005

0

0.005

0.01
Radiative Cooling (emissivity at 0.1)

Surface Temperature (K)

R
ad

ia
te

d 
H

ea
t (

J/
se

c)

1.02 10 3−⋅EnergyR Ts( )

303.2

Ts
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